
www.manaraa.com

University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2017

Power Efficient High Temperature Asynchronous
Microcontroller Design
Nathan William Kuhns
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Computer and Systems Architecture Commons, and the Digital Circuits Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Kuhns, Nathan William, "Power Efficient High Temperature Asynchronous Microcontroller Design" (2017). Theses and Dissertations.
1911.
http://scholarworks.uark.edu/etd/1911

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1911?utm_source=scholarworks.uark.edu%2Fetd%2F1911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


www.manaraa.com

Power Efficient High Temperature Asynchronous Microcontroller Design 
 
 
 

A dissertation submitted in partial fulfilment 
of the requirements for the degree of 
Doctor of Philosophy in Engineering 

 
 
 

by 
 
 
 

Nathan Kuhns 
University of Arkansas 

Bachelor of Science in Computer Engineering, 2011 
 
 
 
 

May 2017 
University of Arkansas 

 
 
 
 

This dissertation is approved for recommendation to the Graduate Council. 
 
 
 
 
 
Dr. Jia Di 
Dissertation Director 
 
 
 
 
 
 
 
Dr. Pat Parkerson 
Committee Member 
 
 
 
 
 
 
 
Dr. Dale Thompson 
Committee Member 
 
 
 

 
 
 
 
 
 
 
 
 
 
Dr. Jingxian Wu 
Committee Member 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 

Abstract 

There is an increasing demand for dependable and efficient digital circuitry capable of operating 

in high temperature environments. Extreme temperatures have adverse effects on traditional silicon 

synchronous systems because of the changes in delay and setup and hold times caused by the variances 

in each device’s threshold voltage. This dissertation focuses on the design of the major functionality of an 

asynchronous 8051 microcontroller in Raytheon’s high temperature Silicon Carbide process, rated for 

operation over 300ºC. The microcontroller is designed in NULL Convention Logic, for which the traditional 

bus architecture used for data transfer would consume a large amount of power. To make the design 

more power efficient, the bus architecture has been replaced with a more complex yet efficient MUX-

based data transfer scheme. This change in the design architecture also allows for improved internal data 

transfer rates leading to an increase in overall circuit performance. Simulation results show that the 

designed Silicon Carbide microcontroller framework successful executes 8051 ISA instructions. Results 

from the MUX-based architecture show an overall decrease in power consumption of over two orders of 

magnitude when compared with its bus architecture counterpart. Also, the increased internal data transfer 

rates resulted in an overall performance improvement of 22.8%. 

  



www.manaraa.com

 

Acknowledgements 

 To Dr. Jia Di, thank you for your guidance, patience, and wisdom during the years I have spent 

under your leadership. Thanks to you, I have had many opportunities to learn and grow as a professional 

in our field. To my fellow colleagues at the University of Arkansas, thank you for your comradery in our 

studies and research. To my family and friends, your unwavering support has helped me overcome many 

challenges along the way. 

  



www.manaraa.com

 

Table of Contents 

I. Introduction ........................................................................................................................................... 1 

A. Problem Statement ............................................................................................................................... 1 

B. Dissertation Statement ........................................................................................................................ 2 

C. Dissertation Organization .................................................................................................................... 3 

II. Background ........................................................................................................................................... 3 

A. Silicon Carbide (SiC) ............................................................................................................................ 3 

B. NULL Convention Logic (NCL) ............................................................................................................ 5 

Multi-Rail Encodings ............................................................................................................................... 5 

NCL Gates .............................................................................................................................................. 6 

NCL Circuit Operation .......................................................................................................................... 10 

C. 8051 Microcontroller .......................................................................................................................... 14 

Design Overview................................................................................................................................... 14 

Addressing Methods ............................................................................................................................. 16 

Component Descriptions ...................................................................................................................... 16 

III. Approach ............................................................................................................................................. 17 

A. NCL Microcontroller Design Challenges .......................................................................................... 17 

B. TAC Architecture and Functionality ................................................................................................. 20 

C. Performance Improvements .............................................................................................................. 22 

D. Power Efficiency Improvements ....................................................................................................... 22 

IV. Results ................................................................................................................................................. 23 

Transistor Level Simulation Results ..................................................................................................... 23 

Power Comparison Simulation Results ................................................................................................ 30 

V. Conclusion .......................................................................................................................................... 33 

VI. References .......................................................................................................................................... 35 

VII. Appendices ......................................................................................................................................... 36 

A. Appendix A: Control Signal Definitions ........................................................................................... 36 

B. Appendix B: Instruction Set and State List ..................................................................................... 40 



www.manaraa.com

 

No Operation ........................................................................................................................................ 40 

ALU Instructions ................................................................................................................................... 40 

MOV Instructions .................................................................................................................................. 48 

Miscellaneous Instructions ................................................................................................................... 51 

BIT Instructions ..................................................................................................................................... 53 

Branch Instructions ............................................................................................................................... 55 

  



www.manaraa.com

 

List of Tables 

Table 1: Semiconductor Material Bandgap Values ...................................................................................... 4 

Table 2: Dual-Rail Encoding ......................................................................................................................... 5 

Table 3: Quad-Rail Encoding ....................................................................................................................... 6 

Table 4: 27 Fundamental NCL Gate Asserting Functions ............................................................................ 8 

Table 5: Power Efficiency Comparison Simulation Results ....................................................................... 33 

  



www.manaraa.com

 

List of Figures 

Figure 1: Bandgap Illustration ...................................................................................................................... 3 

Figure 2: TH34 Gate Symbol ....................................................................................................................... 6 

Figure 3: TH54w322 Gate Symbol ............................................................................................................... 7 

Figure 4: (a) TH12b Gate Symbol and (b) TH22n Gate Symbol .................................................................. 7 

Figure 5: TH33 Gate Schematic .................................................................................................................. 9 

Figure 6: One-Bit NCL Register ................................................................................................................. 11 

Figure 7: Single-State NCL Pipeline .......................................................................................................... 12 

Figure 8: NCL 3-Ring Register ................................................................................................................... 13 

Figure 9: Intel 8051 Microcontroller Architecture ....................................................................................... 15 

Figure 10: Timing and Control (TAC) Logic Block and Bus Replacement Architectural Theory ............... 19 

Figure 11: TAC Architecture....................................................................................................................... 22 

Figure 12: ADD A, #data Instruction Simulation Output Waveform ........................................................... 25 

Figure 13: ANL A, Rn Instruction Simulation Output Waveform ................................................................ 26 

Figure 14: MOV A, Rn Instruction Simulation Output Waveform ............................................................... 27 

Figure 15: JNC rel Instruction Simulation Output Waveform ..................................................................... 28 

Figure 16: SETB C Instruction Simulation Output Waveform .................................................................... 29 

Figure 17: Bus Architecture Cadence Power Simulation Test Setup ........................................................ 31 

Figure 18: MUX-Based Architecture Cadence Power Simulation Test Setup ........................................... 31 

Figure 19: Bus Architecture Power Simulation Waveform ......................................................................... 32 

Figure 20: MUX-Based Architecture Power Simulation Waveform............................................................ 32 

 



www.manaraa.com

1 

I. Introduction 

A. Problem Statement 

There is an increasing demand for reliable high temperature digital circuitry in many fields today, such as 

automobiles, commercial drilling, aerospace applications, and power electronics. In these fields, 

engineers are faced with the challenge of maintaining a suitable environment for integrated circuits (ICs). 

This is typically done by either routing signals across long distances away from the heat source or by 

implementing costly climate control spaces. These solutions significantly increase size, weight, and power 

(SWaP) demands and/or decrease the overall performance and reliability of the system, which would be 

avoided if the ICs themselves could operate in extreme temperatures. Along with extreme temperatures, 

large temperature swings also cause timing issues in traditional synchronous digital systems due to 

changes in electron mobility as temperatures change. These changes affect threshold voltages of each 

device which could lead to violations in setup and hold times, ultimately resulting in circuit failure. 

In recent years, Silicon Carbide (SiC) has become an appealing alternative to Silicon (Si) for use as a 

semiconductor device material. SiC shares the same molecular structure as Si making it a suitable 

replacement but has a wider band-gap, which innately gives SiC more resiliency in high temperature 

environments. SiC components have proven to function reliably at temperatures up to 500 ºC over the 

span of 1,000 hours [1]. SiC processes are still a relatively new technology and therefore are still under 

active development. When compared to their Si counterparts, SiC processes exhibit larger device sizes 

and supply voltages as well as minimal routing layers. There is also a significant decrease in overall 

performance, and an increase in device-to-device variation which shifts device threshold voltages even 

further. Despite these shortcomings, research continues to improve SiC circuit technology for viable use 

in commercial applications. Developed by Raytheon, the high temperature silicon carbide (HTSIC) 

process offers an assortment of features that make digital IC design in SiC possible. HTSIC is a 1.2µm 

CMOS process rated for stable operation over 350 ºC [2]. It exhibits a 12-15V nominal voltage, one metal 

and two poly layers for routing, N-type substrate, and utilizes a 4H polytype molecular structure. HTSIC is 

the first CMOS SiC process with a high-fidelity process design kit (PDK) [3], and is chosen for the 

implementation of this work. 



www.manaraa.com

2 

Asynchronous circuits use handshaking signals instead of a global clock signal to control logic flow 

throughout a design, making them impervious to the timing problems caused by large temperature swings 

in their synchronous counterparts. NULL Convention Logic (NCL) is a quasi-delay insensitive digital logic 

paradigm introduced in 1996 [4], and has been successfully implemented in SiC in the past [5], [6]. NCL 

is a “correct-by-construction” logic architecture, meaning if all individual devices remain fully functional 

then the design as a whole will continue to function properly regardless of timing, making NCL extremely 

robust in high-temperature applications. 

In the early 1970’s, Gary Boone of Texas Instruments (TI) noticed several commonalities between many 

ongoing projects that could be performed by a single multi-purpose IC rather than several different 

specialized circuits. Boone’s idea gave birth to the first ever microcontroller, called the TMS1802NC, and 

was released in industry in 1974 [7]. The TMS1802NC contained 5,000 transistors, 128 bits of data 

memory and 3,000 bits of program memory. It was the first IC with the flexibility to perform any number of 

unique tasks, and within the next decade nearly 100 million units were sold worldwide. Today, 

microcontroller designs are still in use and have undergone many improvements and alterations to 

encompass an even larger area of functionality. In 1980, Intel released the 8051 microcontroller which is 

regarded as one of the most popular designs and is still in popular use today. The straightforward 

modular design of the 8051 gave way to several variations of the design to be released, including the 

8031 variant which uses only external program memory instead of an internal/external split memory 

structure. The flexibility of this microcontroller makes it a highly desirable design for a wide range of 

applications and is the reason it was chosen for this work.  

B. Dissertation Statement 

The goal of this dissertation is to design a NCL SiC microcontroller instruction block modeled after the 

Intel 8031, and will represent the first asynchronous microcontroller component design in SiC. The 

common bus structure used in synchronous 8031/8051 for data delivery will be replaced with a MUX-

based data delivery structure to reduce power consumption at the cost of the area required to implement 

the bus replacement system and the control logic necessary for its operation. Also, several performance 



www.manaraa.com

3 

improvements implemented were made possible by the removal of the bus due to the added ability to 

transfer multiple sets of data simultaneously. 

C. Dissertation Organization 

Chapter 2 provides background information for the purpose of gaining a better understanding of the 

integral components and theory behind this work: SiC, NCL and the 8051 microcontroller. Chapter 3 gives 

insight into the approach taken to design this circuit and the challenges faced during each phase of the 

project. Chapter 4 presents performance and power consumption transistor level simulations results and 

analysis. Chapter 5 summarizes the findings based on the simulation results and discusses future 

possibilities of this work. 

II. Background 

A. Silicon Carbide (SiC) 

Bandgap

e¯ 

e¯ 

e¯ e¯ 

e¯ e¯ e¯ 
e¯ e¯ 

e¯ 

e¯ 

e¯ 

e¯ 

e¯ 

e¯ 

h  

h  

h  

h  

H
ig

he
r 

En
ge

ry
 

El
ec

tr
on

s
H

ig
he

r 
En

ge
ry

 
H

o
le

s

Conduction 
Band

Valence 
Band

 

Figure 1. Bandgap Illustration [6] 

SiC is a wide-bandgap semiconductor material that shares the same molecular structure as Si, known as 

a crystalline lattice structure [8]. This structure lends itself well for free electrons to freely move throughout 

the structure, making SiC a suitable replacement for Si in semiconductor devices. When an electron is at 

rest, covalently bonded with its parent atom, it is in what is known as the valence band. In an atomic 

structure, there are many atomic orbitals in which an electron may reside. Electrons tend to come to rest 



www.manaraa.com

4 

in the orbital where the least amount of energy is required. However, several factors such as ambient 

energy in the environment, the atomic structure resided in, and other quantum forces may prevent 

electrons from attaining their lowest possible energy state. Higher energy electrons reside in the upper 

levels of the valence band and if energy is obtained from an outside source such as heat, an electric field 

or even light, then the electron can break free from its covalent bond. When this happens, the electron 

enters what is known as the conduction band and leaves behind what is known as a hole. A hole is simply 

a vacant location in an atomic orbital with a net positive charge, therefore attracting other electrons. As 

this process continues, the positive charged holes effectively move in the opposite direction of the free 

electrons. This creates two types of carriers, electrons and holes, and when these carriers move across 

the semiconductor they create an electric current in the opposite direction of the electron travel. The term 

bandgap refers to the energy required to move an electron from the valence band to the conduction band 

in a molecular structure. These concepts are illustrated in Figure 1 [6]; in this visual, high energy 

electrons rise to the upper levels of the conduction band and high energy holes sink to the lower levels of 

the valence band. 

Semiconductor 
Material 

Bandgap 
(eV) 

Germanium 0.66 

Silicon 1.12 

Gallium Arsenide 1.42 

4H-Silicon Carbide 3.26 

Gallium Nitride 3.4 

Silicon Nitride 5 

Diamond 5.5 

Silicon Dioxide 9 

Table 1. Semiconductor Material Bandgap Values [8] 

The energy an electron carries is measured in electron volts, or eV. Si is the most prominent 

semiconductor material because it exhibits a comparatively small bandgap of 1.12 eV, this being the 

energy required to free an electron from its covalent bond. This attribute means Si semiconductor devices 

are fast and require a small nominal voltage for operation. It also means that Si devices are more 

susceptible to undesired device breakdown when exposed to environments with excess ambient energy 

present, such as high temperatures and radiation. When this happens, the molecular structure of the 



www.manaraa.com

5 

semiconductor is inundated with carriers and the electrical current can no longer be controlled leading to 

complete circuit failure. SiC exhibits a bandgap of 3.26 eV, nearly triple the bandgap of Si. The wide 

bandgap gives SiC an innate resistance to the ambient energy in an environment causing unwanted 

conduction. Table 4 displays common semiconductor materials and their associated bandgap values [8]. 

B. NULL Convention Logic (NCL) 

Multi-Rail Encodings 

Asynchronous systems typically encode their data in one of two ways: “bundled-data encoding” which 

utilizes one wire per bit and is accompanied by separate wires signifying request and acknowledge 

signals, and “multi-rail encoding” which utilizes more than one wire per bit which allows for a three-state 

logic encoding. NCL implements multi-rail encodings, most commonly dual-rail, to represent the presence 

of data as well as the absence of data. For example, a single bit in dual-rail encoding is represented by 

two wires, or rails, and has three possible values: DATA1, DATA0 and NULL. These rails are encoded in 

a one-hot scheme and are mutually exclusive, meaning if both are asserted simultaneously it is an error 

state. Table 1 displays the encodings for dual-rail signals in NCL. The purpose of the NULL state is to 

flush out the previous logic values and indicate DATA is not ready. 

 NULL DATA0 DATA1 INVALID 

Rail0 0 1 0 1 

Rail1 0 0 1 1 

Table 2. Dual-Rail Encoding 

In certain scenarios, it may be more efficient to implement quad-rail encoding. Quad-rail encoding uses 

four rails to represent a single bit but adds two more data values, DATA2 and DATA3. Quad-rail encoding 

also uses a mutually exclusive one-hot scheme and all encodings falling outside of this scheme are 

considered an error state, as seen in Table 2. In rare cases, encodings greater than quad-rail may be 

used and in such cases the same protocols used for quad-rail encoding are followed but expanded to suit 

the number of rails and possible data values. 

 



www.manaraa.com

6 

 NULL DATA0 DATA1 DATA2 DATA3 INVALID 

Rail0 0 1 0 0 0 

OTHERS 
Rail1 0 0 1 0 0 

Rail2 0 0 0 1 0 

Rail3 0 0 0 0 1 

Table 3. Quad-Rail Encoding 

There are generally two methods used to denoting multi-rail signals. The first of which, more commonly 

used in the design phases, is by name(i).rail<y>, where name signifies the actual name of the signal, i 

signifies the bit position of the wire in a multi-bit signal, and y signifies the rail being referenced for the 

particular signal. For example, output_low(5).rail1 indicates rail one of bit position 5 in a signal named 

“output_low.” The second method used to denote a multi-rail signal, more commonly used to represent 

signals in displaying equations, is by 𝑛𝑎𝑚𝑒𝑖
𝑦
. To clarify, the signal from the previous example would be 

denoted as 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑤5
1. Throughout this dissertation, the first notation will be used. 

NCL Gates 

3
A
B
C
D

Z4 Inputs

Threshold 
of 3

 

Figure 2. TH34 Gate Symbol 

There are 27 fundamental gates, called threshold gates, in the NCL paradigm. As the name implies, the 

output of each gate will only be asserted once the inputs to the gate meet certain criteria, or threshold. 

Each of these gates has between two and four inputs with only one output, and performs a unique 

operation represented by a simple Boolean function. The naming convention clearly conveys the output 

equation for each gate and is as follows: THmn, where 1 ≤ m ≤ n in cases excluding weighted inputs, m 

represents the threshold value that must be met for the output to be asserted, and n represents the total 



www.manaraa.com

7 

number of inputs to the gate. For example, there are four inputs to a TH34 gate and at least three of 

those inputs must be asserted for the output to be asserted. For the purposes of this dissertation, the 

inputs for NCL gates will be labeled A through D and the output will be labeled Z. Therefore, the output 

equation for a TH34 gate will be 𝑍 = 𝐴𝐵𝐶 + 𝐴𝐵𝐷 + 𝐴𝐶𝐷 + 𝐵𝐶𝐷. The symbol for the TH34 gate can be 

seen in Figure 2. 

5
A
B
C
D

Z4 Inputs

Threshold 
of 5

Weight of 3

Weight of 2
 

Figure 3. TH54w322 Gate Symbol 

There are several addendums to this notation to indicate special functionality in a gate. The first of which 

is weighted inputs, signified by THmnWx1x2···xn where 1 < x ≤ m. The value of each consecutive variable 

corresponds to the weight of each input in order, e.g., x1 represents the weighted value of input A, x2 

represents the weighted value of input B, and so on. Therefore, a TH54w322 represents a four-input gate 

with a threshold value of five, and input A has a weighted value of 3 while inputs B and C both have a 

weighted value of 2. The fourth input, D, has a weighted value of one and therefore does not have a value 

representing it in the list of weights. This means the output equation of the TH54w322 gate is 𝑍 =  𝐴𝐵 +

𝐴𝐶 + 𝐵𝐶𝐷, the symbol for which can be seen in Figure 3. 

1
A

B
Z 2n

A

B
Z

Reset
 

                                      (a)                                                                                   (b) 
 

Figure 4. (a) TH12b Gate Symbol and (b) TH22n Gate Symbol 



www.manaraa.com

8 

 

The next addendum to the THmn notation is required for inverting gates, which are represented by the 

form TH1nb. Generally, inverting NCL gates have a threshold of one and are analogous to their non-

inverting counterpart with the only difference being the absence of an output inverter. The symbol for an 

inverting gate, the TH12b, is shown in Figure 4a. The last addendum is used for resettable gates, which 

are indicated by the concatenation of a single letter d or n to the end of the THmn notation. All resettable 

gates have a separate input designated “reset” and when asserted, forces the output of the gate to DATA 

if a THmnd or NULL if the gate is a THmnn. An example resetting gate symbol for the TH22n is seen in 

Figure 4b. 

NCL Gate Boolean Function 

TH12 A + B 

TH22 AB 

TH13 A + B + C 

TH23 AB + AC + BC 

TH33 ABC 

TH23w2 A + BC 

TH33w2 AB + AC 

TH14 A + B + C + D 

TH24 AB + AC + AD + BC + BD + CD 

TH34 ABC + ABD + ACD + BCD 

TH44 ABCD 

TH24w2 A + BC + BD + CD 

TH34w2 AB + AC + AD + BCD 

TH44w2 ABC + ABD + ACD 

TH34w3 A + BCD 

TH44w3 AB + AC + AD 

TH24w22 A + B + CD 

TH34w22 AB + AC + AD + BC + BD 

TH44w22 AB + ACD + BCD 

TH54w22 ABC + ABD 

TH34w32 A + BC + BD 

TH54w32 AB + ACD 

TH44w322 AB + AC + AD + BC 

TH54w322 AB + AC + BCD 

THxor0 AB + CD 

THand0 AB + BC + AD 

TH24comp AC + BC + AD + BD 

Table 4. 27 Fundamental NCL Gate Asserting Functions 

All NCL gates utilize hysteresis, meaning the logic in each gate is structured such that when the output is 

asserted, all inputs are required to be deasserted for the output to deassert unless the gate is resettable. 



www.manaraa.com

9 

Hysteresis works in conjunction with the NULL state to achieve delay insensitivity in the NCL paradigm. 

The previously mentioned 27 fundamental NCL gates are listed in Table 3 with the output equation for the 

Boolean function they perform. 

All Threshold gates are composed of four major sections that are integral to their functionality. These 

sections are set, reset, hold0 and hold1. Each section is easily distinguishable when a transistor-level 

schematic of a gate is examined, as seen with the TH33 gate schematic pictured in Figure 5. The function 

of the set and reset sections is to change the output of the gate from logic0 to logic1 or from logic1 to 

logic0, respectively. The hold0 and hold1 sections work in series with a set of hysteresis transistors and 

are responsible for holding the current output logic value determined by the set and reset sections. 

AA

A

A

B

B

B

BC C

C

C
Z

Z

Z

Hysteresis 
Transistors

Hold0

Hold1

Set

Reset

 

Figure 5. TH33 Gate Schematic 

To achieve delay-insensitivity, NCL circuits also need to be fully observable and input-complete. For a 

design to be fully observable, all gate transitions must have an impact on an output of the circuit. The 

isochronic fork assumption allows for orphans that do not cause a gate transition to be ignored. Orphans 

are defined as wires that are asserted but are not used to determine an output of the circuit [4]. For a 

design to be input-complete, it must exhibit the following: all inputs of the circuit must transition from 



www.manaraa.com

10 

NULL to DATA before any outputs transition from NULL to DATA, and all inputs of the circuit must 

transition from DATA to NULL before any outputs transition from DATA to NULL. 

NCL Circuit Operation 

In order to fully understand sequential NCL circuit operation, it is important to first understand the 

functionality of NCL registers. The schematic for a single-bit NCL register can be seen in Figure 6. These 

registers implement resettable and inverting NCL gates, and are analogous to a Boolean D-Flip Flop. In 

addition to storing the value of a dual-rail signal, these specialized registers can perform the handshaking 

functionality necessary for asynchronous sequential operation. This is done by the Ko signal, which 

signifies whether the register is currently storing DATA or NULL, and the Ki signal, which controls whether 

a DATA or NULL input can be stored in the register. When Ki is asserted, only DATA on the input will be 

able to pass through and be stored on the output, and when Ki is not asserted, only NULL will be able to 

be stored on the output. When DATA is stored in the register, Ko outputs a ‘0’ which is known as a 

request for NULL (rfn) signal. Conversely, when a NULL is stored in the register, Ko outputs a ‘1’ which is 

known as a request for DATA (rfd) signal. It is important to note that these handshaking signals are single 

bit, which means that completion logic is required for the Ko signal in multi-bit components. Completion 

logic is typically made up of THnn gates that ensure every bit of the component is outputting DATA or 

every bit is outputting NULL, and transitions the Ko signal appropriately. For example, in an 8-bit NCL 

register, 8 single-bit registers would be used simultaneously. In this setup, all Ki signals would be tied 

together into a single input signal and the eight Ko signals would be fed into two TH44 gates that feed into 

a single TH22 gate. The output of the TH22 gate would serve as the Ko signal for the entire 8-bit NCL 

register. 

One of the most vital concepts in sequential NCL circuit operation is the interaction between the Ki and 

Ko signals that create the handshaking protocol. The simplest form of logic that exhibits this interaction in 

NCL is a single-stage pipeline, which consists of two NCL registers and a block of combinational logic as 

seen in Figure 8. The primary inputs for this circuit are connected to the input register, which are stored in 

the register and fed to the combinational logic depending on the value of the input register’s Ki signal. The 

resulting signals from the combinational logic are connected to another register whose output represents 



www.manaraa.com

11 

the circuit’s primary output. The output register’s Ki signal and the input register’s Ko signal are both 

external signals, and the output register’s Ko signal is connected directly to the input register’s Ki signal. 

1

2n
Input.rail0

Input.rail1
2n

Reset

Ko

Ki

Output.rail0

Output.rail1

 

Figure 6. One-Bit NCL Register 

At circuit startup, reset will be asserted which typically means both registers will be set to NULL. This 

means both register’s Ko signals will have a value of ‘1’ indicating a rfd. When a DATA wavefront is 

presented to the input register it will be stored immediately because the Ki signal, which is the Ko signal 

from the output register, is asserted. This action transitions the input register’s Ko signal to a value of ‘0’ 

indicating a rfn. The DATA wavefront then propagates through the combinational logic and if the external 

Ki signal is asserted then the results are stored in the output register, which causes its Ko signal to 

deassert. The system is now presenting the combinational logic’s output and is ready for a NULL 

wavefront to propagate through and clear the previous DATA wavefront’s values. When a NULL 

wavefront is presented, it is immediately stored on the input register which incurs a rfd. The NULL 

wavefront propagates through the combinational logic and is fed to the output register. When the external 

Ki signal is deasserted, the NULL wavefront is stored on the output register and the system has returned 

to its initial state. This process is what is known as a DATA-NULL cycle. 



www.manaraa.com

12 

Input 
Register

Output 
Register

Combinational 
Logic

Ko             Ki Ko             Ki
 

Figure 7. Single-Stage NCL Pipeline 

The standard structure used for data flow and storage in NCL is the 3-ring register, an 8-bit version can 

be seen in Figure 7. This structure is necessary to preserve a set of DATA during the process of a NULL 

wavefront propagating through a design. In the reset state, the first two registers are initialized and store 

NULL values, while the third register stores and outputs a value of DATA0. With the external Ki at logic0, 

the state of each register is as follows: The combinational logic is presenting DATA to the first register but 

its Ki is logic0, preventing the DATA set from being stored; the second register is being presented with a 

NULL set from the first register and its Ki is logic0, allowing the NULL set to be stored; the third register is 

being presented with a NULL set from the second register and its Ki signals is logic1, which does not 

allow for the NULL set to be stored. The system is now in a steady-state, known as the NULL state of a 3-

ring register because the external data output is NULL, and will not change as long as the value of the 

external Ki signals remains logic0. When the primary data output is NULL and the external Ko signal is 

logic1, the system is ready for reset to be deasserted the external Ki signal to be asserted. 

When the external Ki signals is driven to logic1, a series of events will occur that will result in another 

steady-state known as the DATA state. After the external Ki signal is asserted, the output of the 

completion logic between the first and second register will switch to logic1 and will allow for the DATA set 

from the combinational logic to be stored on the first register. This means the primary data output and the 

input to the second register are both the value of the combinational logic DATA set. Now that the first 

register is storing a DATA set, its Ko is deasserted and allows the third register to store the NULL set 

being presented from the second register. This action also sends a NULL wavefront that propagates 

through the combinational logic. The Ko signal of the third register is then asserted, which deasserts its 

Ko signal feeding into the completion logic and allows the register to store the DATA set being presented 



www.manaraa.com

13 

by the first register. The system has now reached the DATA state and will remain in this state until it is 

reset or the external Ki signal is deasserted.  

NCL Register

Reset to 
NULL

NCL Register

Reset to 
NULL

NCL Register

Reset to 
DATA

Reset

Ko Ko KoKi Ki Ki

COMP

Combinational 
Logic

External 
Ki

External 
Ko

DATA 7:0

Write 
DATA 7:0

Output 
DATA 7:0

8 8 8

R/W

 

Figure 8. NCL 3-Ring Register 

The time between two consecutive DATA wavefronts, or the DATA-to-DATA time, is referred to as 𝑇𝐷𝐷 

and is analogous to a clock cycle in traditional synchronous systems. However, unlike a clock cycle, 𝑇𝐷𝐷 

does not occur at a fixed frequency and can differ from cycle to cycle based on the data pattern and the 

completion time of the logic contained in the design. The circuit produced is one that operates at the 

highest speed possible for every cycle, resulting in what is known as “average-case performance.”. 

Synchronous designs require detailed timing analysis to determine the slowest path through the circuit 

which ultimately decides the maximum performance of the entire system. The result is a circuit that 

performs at what is known as “worst-case performance.” This only becomes more complex as the 

temperature of the circuit’s environment rises. NCL’s ability to automatically adjust performance in any 

environment makes it highly resistant to factors such as process variation, drastic temperature swings 

and supply voltage variations [9], [10]. NCL’s robustness and average-case performance, compared to 

synchronous systems worst-case performance, make it suitable for this work.  



www.manaraa.com

14 

C. 8051 Microcontroller 

Design Overview 

The Intel 8051 has become one of the most widely used microcontrollers since its release in 1980. Its 

modular design and Harvard architecture make it a robust and efficient IC capable of a wide range of 

programmable functionalities. The features of the 8051 include [11]: 

• 8-bit CPU 

• Extensive Boolean processing (single-bit) capabilities 

• 64K Program Memory address space 

• 64K Data Memory address space 

• 4K bytes of on-chip Program Memory 

• 128 bytes of on-chip Data RAM 

• 32 bidirectional and individually addressable I/O pins 

• Two 16-bit timer/counters 

• Full duplex UART 

• 6-source/5-vector interrupt structure with two priority levels 

• On-chip clock oscillator 

The 8051 instruction set is optimized for 8-bit operations and provides a variety of addressing methods for 

accessing the internal data memory. In addition to the suite of 8-bit operations, extensive support for 

single bit operations is available which allow for direct bit manipulation. Note that there is a memory block 

designated for special function registers (SFRs) which shares the same memory space as the internal 

data memory but exists as a separate entity in the overall design. Also, the circuit designed in this work 

more closely resembles the 8031 variant of 8051, in which there is no program memory that resides 

internally, meaning all 64K program memory is external. The full 8051 architecture is shown in Figure 9 

[11]. The focus of this dissertation is to produce a design with reduced power consumption due to the bus 

data transfer method and increase overall performance of the functionality contained in the instruction set. 

Due to this, a number of components and functions that are unessential to the operations performed by 

instructions were excluded from the design. These items include: the serial port, timer/counters, 



www.manaraa.com

15 

interrupts, power control and the associated SFRs. The work in this dissertation builds off a previously 

designed NCL 8031 microcontroller successfully implemented in a 0.5 µm Si process [12]. This circuit will 

serve as a reference point for comparison in performance and power consumption simulation results. 

Address 
Register

RAM
Port 0 
Latch

Port 2 
Latch

Port 0 
Drivers

Port 2 
Drivers

B 
Register

TMP2

Accumulator

TMP1

ALUALU

PSW

Stack 
Pointer

Interrupt, Serial, Port 
and Timer Blocks

Program 
Memory

Port 1 
Latch

Port 3 
Latch

Port 1 
Drivers

Port 3 
Drivers

Program 
Address 
Register

Buffer

PC 
Incrementer

Program 
Counter

DPTR

P0.0 – P0.7 P2.0 – P2.7

P1.0 – P1.7 P3.0 – P3.7

PSEN
ALE

EA
Reset

XTAL 1 XTAL 2

Vcc

Vss

In
st

ru
ct

io
n

 
R

eg
is

te
rTiming

and
Control

In
st

ru
ct

io
n

 
R

eg
is

te
rTiming

and
Control

OscillatorOscillator

IP
TL1
TH1

IE
TL0
TH0

SBUF
TCON
TMOD

PCONSCON

 

Figure 9. Intel 8051 Microcontroller Architecture 



www.manaraa.com

16 

Addressing Methods 

The 8051 utilizes 5 addressing methods known as: immediate, direct, register direct, register indirect and 

indexed addressing. In immediate addressing, the operand is represented by the 8-bit data value drawn 

directly from the program memory immediately after the instruction. Direct addressing uses the 8-bit data 

value read from program memory immediately after the instruction to represent the address of the 

operand. Only the internal memory address space, or the internal data memory and SFR space, can be 

accessed by direct addressing. Register direct addressing uses three bits of the instruction to specify a 

register in the internal data memory that contains the operand. This method is preferred for applications 

requiring a large amount of program memory because it only requires a one byte instruction to perform. 

Register indirect addressing specifies a specific register in the internal data memory that contains the 

address of the operand. Indexed addressing uses the data pointer (DPTR) or program counter (PC) to 

point to the base of a look up table in program memory and then increments the selected address by the 

value in the accumulator to reach the intended table entry containing the operand. 

Component Descriptions 

The following list contains the individual components of the 8051 microcontroller relevant to this work and 

their functionality: 

• Program Status Word – The program status word (PSW) stores the value of several important 

status bits that reflect the current state of the CPU which are: the carry flag (CY), the auxiliary 

carry flag (AC), two bits signifying the current register bank selected, the overflow flag (OV), a 

parity flag, and two user-definable bits. In addition to arithmetic operations, the carry flag is also 

used to store values in several Boolean operations. The auxiliary carry flag is used primarily in 

BCD operations. The 8051 utilizes four register banks each containing eight 8-bit registers (R0-

R7); the register bank currently in use is signified by the value of the two register select bits. The 

parity bit reflects the number of bits asserted in the Accumulator, P = 1 if there are an odd 

number of 1s in the accumulator and P = 0 if there are an even amount. 

• Accumulator – The accumulator (ACC) is involved in over half of the instructions of the 8051, 

making it the most used SFR in the design. It is 8-bits wide and used as a general-purpose 



www.manaraa.com

17 

register to accumulate and store the results of arithmetic, Boolean, data transfer and branch 

operations. 

• B Register – The B register is similar to the ACC but is only used in two instructions: MUL AB 

and DIV AB. Many programmers also use the B register as a “scratch pad” or generic storage 

location. 

• Stack Pointer – The stack pointer (SP) is an 8-bit register used to point to an internal data 

memory location of the stack. When an instruction pushes a value onto the stack, the SP is 

incremented and a value is stored at that location. When an instruction pops a value off the stack, 

the value at the location indicated by the SP is returned and then the SP is decremented. 

• Port Registers – Each port is directly connected to their own set of registers which can be used 

as general purpose registers. If external memory is used then only port 1 and port 3 registers may 

be used for general purposes due to the actions port 0 and port 2 perform in accessing external 

memory. 

• Data Pointer – The data pointer (DPTR) is the only user accessible 16-bit register in the 8051. It 

can also be used as two separate 8-bit register, if needed. The primary function of the DPTR is to 

store the address that will be used when accessing external data. 

• Program Counter – The program counter (PC) is a 16-bit register that is not directly accessible 

by the user. Its primary function is to store the address of instructions read from the program 

memory. Upon startup, the PC is initialized to zero and is incremented by one after every read. 

III. Approach 

A. NCL Microcontroller Design Challenges 

In order to implement the same component interaction scheme in an asynchronous NCL 8031 

microcontroller that is used in a synchronous counterpart, involving a bus data transfer system, a couple 

adaptations are necessary. The first adaptation is that using the bus must be done under the assumption 

of isochronic forks if the design is to achieve quasi-delay insensitivity. This means that if a component is 

presented with a DATA or NULL set, then it must be assumed that all other components were also 

presented with that set. The second adaptation is to ensure that the bus can effectively present DATA-

NULL sets throughout the microcontroller. This can be accomplished either by giving individual 



www.manaraa.com

18 

components the capability to independently uphold each cycle or by making the control logic responsible 

for presenting a NULL cycle to all components between DATA cycles. The first method requires a 3-ring 

register or similar structure to be included in each component so that DATA and NULL sets are 

processed congruently. This method would be costly in terms of area, power and performance. The 

alternative requires pull-down resistors attached to each signal of the bus to ensure that NULL is 

presented whenever the bus is not being driven as DATA. This method is less costly in terms of area and 

performance but still consumes a large amount of power to implement due to the leakage power drawn 

through the pull down resistors during DATA sets. 

The removal of the bus structure has significant effects on the adaptations required for the NCL 8031 

design. First, there is no longer a need to tri-state component outputs that drive the bus, resulting in a 

reduction of area that was previously used for those circuits and the control signal logic to operate them. 

Also, this being the primary motivation behind this work, neither of the methods for maintaining congruent 

DATA-NULL wavefronts mentioned previously are required. The method to replace the bus architecture is 

straightforward: instead of implementing one data transfer path for all component’s I/O, each data transfer 

path between components will now be implemented separately. With so many independent data transfer 

paths, it is necessary to utilize MUX and DEMUX circuit components at the output and input of each 

individual component. While this is costly in terms of area, it comes with the added benefit of improved 

overall power and performance which will be discussed later in this chapter. Also, upon system power up, 

the absence of the bus means all logic gates now require initialization by means of control logic. This 

control logic is also utilized in-between DATA sets to present a NULL wavefront that clears the previous 

state’s data. 

Figure 10 displays the general conceptual theory for the system level architecture used in this design. 

The general flow of processing instructions is identical to a typical synchronous microcontroller, despite 

the significant changes in data transfer operations. First, the timing and control (TAC) component stores 

the current instruction in the instruction register (IR). The TAC decodes the current instruction and 

generates control signals that are dependent on the operation being performed. These control signals are 

grouped together and transmitted to their respective “slave” components which then incite the appropriate 

action according to the instruction received. Control signal groups are composed of several different types  



www.manaraa.com

19 

Slave n-1

Slave 1

Timing and Control (TAC)Timing and Control (TAC)

Ko

Instruction

Din

Dout

Ki

Ctrl

Ko

Din

Dout

Ctrl

Slave n

Slave 2
Ko

Din

Dout

Ctrl

Ko

Din

Dout

Ctrl

COMP

Reset

 
Figure 10. Timing and Control (TAC) and Bus Replacement Architectural Theory 

of signals which may include: storage component read and/or write signals, operation selection, address 

encoding select signals, status flag set/reset, and MUX/DEMUX select signals for the data transfer 

system. Refer to Appendix A for a list and description of all control signals used. When DATA is being 

processed by a slave component, its respective Ko signal will deassert. Conversely, when a slave 



www.manaraa.com

20 

component completes its operation then its Ko signal will be asserted. All Ko signals are fed into a 

completion logic block, the output is connected to the TAC’s Ki input and is used to trigger state 

transitions in an asynchronous finite state machine (AFSM). 

B. TAC Architecture and Functionality 

As seen in Figure 11, the TAC is composed of the following: the IR, instruction decoder (MEAG_Opcode), 

a AFSM, state latches, and a control signal generation block (CS_Logic_Top) making up an 

asynchronous finite state machine (AFSM). The structure and functionality of each individual block is as 

follows: 

• Instruction Register – The basic structure of the IR consists of a NCL 3-ring register and a 2-

input MUX. The feedback loop of the 3-ring register is connected to one input of the MUX and the 

external instruction input is connected to the second. The select signal is decided by whether the 

AFSM is currently in state(0) and is used to choose between the current instruction stored in the 

3-ring register, if it has not completed, or a new incoming instruction. The output of the MUX 

feeds into the input of the 3-ring register. 

• MEAG_Opcode – This component decodes the instruction received from the IR and outputs a 

111-bit mutually exclusive assertion group (MEAG) that represents the unique operation that is 

selected. Though the 8051 ISA is composed of 256 instructions, many of these instructions utilize 

one of the eight registers in the currently selected memory bank contained in the SRAM. For 

example, the “ADD A, Rn” instruction adds the value of the accumulator with the value contained 

in a specific register in the SRAM and then stores the result in the accumulator. In the 8-bit value 

for this instruction, the three least significant bits represent the register (0-7) to be used in the 

instruction. This means the “ADD A, Rn” instruction represents one unique operation but occupies 

8 places in the instruction set. Given this information, the 256 individual instructions can be 

reduced to 111 unique operations. 

• State_Calc – This is a block of control logic that calculates the next state of the system based on 

the current operation and the previous state of the system. State information is output in the form 

of a 13-bit MEAG signal. 



www.manaraa.com

21 

• State_Latches – This is a unique NCL memory structure designed specifically for the state 

information received from the AFSM. Conceptually, this component is structured and behaves the 

same as a NCL 3-ring register; it differs from a 3-ring register by the data it stores, a 13-bit single-

rail value as opposed to a dual-rail value, and it outputs the values from the previous data cycle 

as well as the current value. The State_Latches are responsible for storing the previous state of 

the AFSM for use in state calculations, sending the state(0) bit to the IR for use in selecting its 

input, and for sending the current state information to the control signal generation logic block. 

• CS_Logic_Top – This is a large collection of combinational logic responsible for the generation 

of the control signals used throughout the microcontroller. For every state in each instruction a 

unique set of control signals are calculated in this component and sent directly to their respective 

destinations. 

During the reset state, the IR will be initialized to its NULL state and State_Latches will be initialized to 

output state(0) as the current state. When reset is deasserted and the state(0) bit is asserted, two 

important actions take place. First, the IR MUX is set to accept the external instruction signal and waits 

until a DATA set is presented. Second, CS_Logic_Top will generate the control signals necessary to 

perform and external program memory read operation. Once the instruction is read from external ROM, it 

is passed through port0 and the MUX-based data transfer architecture and presented to the TAC. When 

the external read and data transfer operations are completed, the TAC Ki signal will be asserted allowing 

for the instruction to be stored in the IR and passed to MEAG_Opcode for decoding. Each of the 111 

unique operations in the 8051 instruction set are represented by a single bit of the resulting opcode 

signal. Once the instruction is decoded, the opcode is sent to the AFSM and the control signal generation 

block for later use. The AFSM then uses the opcode in conjunction with the previous state value from the 

State_Latches block to calculate the next state value. Once this is completed, the state latches store the 

next state value, output it to the control signal generation logic as the current state value, and store the 

previous state value to be used by the AFSM during the next cycle. The CS_Logic_Top component is 

now presented with both the opcode and the current state value. Using these two sets of data, the control 

signals needed in each state are generated and output to their corresponding components throughout the 

microcontroller and the cycle begins again. 



www.manaraa.com

22 

Instruction 
Register

select

Instruction 7:0 MEAG_Opcode

State_Calc

Opcode 110:0

State_
Latchesstate(0) Next_State 12:0

8 CS_Logic_Top

Previous_State 12:0

Current_State 12:0

C
o

n
tr

o
l S

ig
n

al
s

rst

rst

Reset

Ki

KiKi

 

Figure 11. TAC Architecture 

 

C. Performance Improvements 

Each instruction entails a unique state list, up to a maximum of twelve states, and in each state a unique 

set of control signals are asserted. The full instruction set and state list for this design can be viewed in 

Appendix B. Using the conventional bus architecture in this design means that only one component can 

transfer data to another location in each state. Therefore, overall performance is limited by use of the bus, 

which often leaves data transfer operations waiting in the pipeline for others to complete. Using the MUX-

based bus replacement architecture improves overall performance by making it possible to perform 

multiple data transfers in a single state, thereby reducing the total amount of states required to perform 

instructions. The only stipulation is that data sources and destinations must all be mutually exclusive of 

one another. Implementing the NCL 8031 using the bus architecture required a total of 877 states to 

perform all instructions [12]. Implementing the MUX-based data transfer architecture only requires a total 

of 677 states to perform all instructions, resulting in a 22.8% increase in overall performance. 

D. Power Efficiency Improvements 

In order to implement a traditional bus structure in a NCL circuit, there are modifications necessary 

compared to that in a synchronous circuit. First, as mentioned previously, pull-down resistors are added 



www.manaraa.com

23 

to each individual wire of the bus. This is to pull the bus low when not being driven to ensure that a NULL 

wavefront is presented to each component connected to the bus between DATA wavefronts. Second, the 

outputs of each component connected to the bus need to be strongly buffered so they are capable of 

driving the bus high. This is due to the extra current drawn through the pull-down resistors added to the 

bus wires. The large buffers and the pull-down resistors require a significant amount of power to 

implement, especially in SiC processes due to their comparatively large nominal supply voltages. 

Replacing the bus with the MUX-based data transfer system eliminates the need for the pull-down 

resistors and large driving buffers, thereby improving the overall power efficiency of the microcontroller, 

as shown in Section IV.B. 

IV. Results 

A. Transistor-Level Simulation Results 

After full-length functional HDL simulations of the SiC 8031 component were completed, the design was 

imported into the Cadence Virtuoso design environment to be implemented in the Raytheon HTSIC 

process. Once imported, full-length transistor level simulations were performed for functional verification 

and performance evaluation using room temperate average-case models. In these tests, the SiC 8031 

design functioned properly, proving the full functionality of the TAC component and the MUX-based data 

transfer system. The results are shown in a subset of simulation waveforms seen in Figures 12 to 16. The 

𝑇𝐷𝐷 for these simulations ranged from 2.29 to 3.44 µs, resulting in a maximum operating frequency range 

from 0.29 to 0.45 MHz. 

Figure 12 displays the waveform results of the ADD A, #data instruction transistor-level simulation. In this 

instruction, an 8-bit data value received from external program memory is used as a direct input to the 

ALU to be added with the current value of the accumulator register and the result is then stored back in 

the accumulator. In the second state of this instruction, there are two internal data transfers performed 

simultaneously, from Port 0 to the ALU’s primary input and from the accumulator to the ALU’s secondary 

input, which previously was not possible using the bus architecture. This instruction’s simulation results 

demonstrate proper functionality of the following: simultaneous internal data transfer operations, correct 



www.manaraa.com

24 

incrementing of the program counter, valid use of the immediate addressing method, correct functionality 

of ALU arithmetic operations, and appropriate functionality of all involved SFRs. 

Figure 13 displays the waveform results of the ANL A, Rn instruction transistor-level simulation. In this 

instruction, the 3 LSBs of the instruction designate which register in the SRAM whose value will be 

transferred to the ALU for the AND operation. This instruction’s simulation results demonstrate proper 

functionality of the following: SRAM address encoding, SRAM data retrieval, and ALU Boolean 

operations. 

Figure 14 displays the waveform results of the MOV A, Rn instruction transistor-level simulation. This 

instruction is simple, the value of the register designated by the instruction is stored in the accumulator. 

This instruction’s simulation results demonstrate correct functionality of the MOV group of instructions. 

Figure 15 displays the waveform results of the JNC rel instruction transistor-level instruction. This 

instruction reads an 8-bit value from external program memory and stores it in a temporary register. Then, 

based on the value of the carry bit in the PSW, the AFSM will either end the current instruction and begin 

the next or add the value in the temporary register to the current value in the PC and then store it in the 

PC. If the carry bit is asserted the current instruction will end, and if the carry bit is deasserted the 

operation will be performed before the next instruction begins. This instruction’s simulation results 

demonstrate correct functionality of the following: bitwise read operations, PC arithmetic operations, and 

instruction branching. 

Figure 16 displays the waveform results of the SETB C instruction transistor-level simulation. This 

instruction is used to assert the bit in the PSW SFR that represents the carry value used in ALU 

operations. This is performed by transferring the entire 8-bit PSW value to the ALU, performing the 

appropriate bitwise operation, and then transferring the result back to the PSW register. This instruction’s 

simulation results demonstrate correct functionality of the control logic and ALU operations utilized in the 

BIT instructions. For the readers understanding, in the following waveforms all Rail0 wires in dual-rail 

signals are blue and all Rail1 wires are green. 



www.manaraa.com

25 

 

Figure 12. ADD A, #Data Instruction Simulation Output Waveform 

ACC 

IN 

STATE 

PC 

OUT 

RESET 

ACC 

OUT 

ALU 

IN 1 

ALU 

IN 2 

ALU 

OUT 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 1 2 3 4 0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 



www.manaraa.com

26 

  

Figure 13. ANL A, Rn Instruction Simulation Output Waveform 

PC 

OUT 

RESET 

STATE 

0 
0 
1 
1 
0 
0 
0 
0 

ALU 

IN 1 

ALU 

IN 2 

ALU 

OUT 

SRAM 

OUT 

ACC 

IN 

ACC 

OUT 

0 1 2 3 4 0 

0 
0 
1 
1 
1 
1 
0 
0 

1 
1 
1 
1 
0 
0 
0 
0 



www.manaraa.com

27 

 

Figure 14. MOV A, Rn Instruction Simulation Output Waveform 

STATE 

RESET 

PC 

SRAM 

OUT 

ACC 

IN 

0 1 2 0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 



www.manaraa.com

28 

 

Figure 15. JNC rel Instruction Simulation Output Waveform 

 

STATE 

RESET 

PC 

TEMP1 

IN 

PSW 

OUT 

TEMP1 

OUT 

0 1 2 3 0 

0 

0 

0 

0 

0 

0 

0 

0 



www.manaraa.com

29 

  

Figure 16. SETB C Instruction Simulation Output Waveform 

STATE 

PC 

OUT 

PSW 

OUT 

TEMP1 

IN 

TEMP1 

OUT 

ALU 

IN 1 

ALU 

OUT 

PSW 

IN 

RESET 

0 1 2 3 0 

0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 



www.manaraa.com

30 

 

B. Power Comparison Simulation Results 

To gauge the effectiveness of the overall power performance improvements, separate test setups were 

created that perform the same operation but utilize the different data transfer methods. Power 

measurements are collected from simulations conducted for both setups in order to obtain an accurate 

side-by-side comparison of the power consumed during a data transfer process. The first test setup is 

composed of copies of the microcontroller’s accumulator and temp1 registers that have been modified to 

operate in conjunction with a bus data transfer system. The outputs of the registers have been tri-stated 

and buffered in order to properly drive a DATA set to the bus wires. Also, included in the test setup are 

the control signals necessary to operate the registers, external inputs connected to the bus used for initial 

data transmission, and pull-down resistors attached to each individual wire of the data bus. The pull-down 

resistors (2 kΩ) and register output buffers are sized appropriately to produce acceptable rise and fall 

times for DATA-NULL transitions. The schematic used in the bus architecture power simulations is shown 

in Figure 16. 

The second test setup, seen in Figure 17, models the behavior of the MUX-based data transfer 

architecture and uses the same accumulator and temp1 register components utilized in the SiC 8031 IC. 

To operate in conjunction with the MUX and DEMUX circuits, each component’s I/O are changed from 

single wire bi-directional signals to two separate signals; one signal is used as the component’s input and 

the other is used as its output. In Figure 17, each register’s inputs are connected to the left side of the 

schematic component, leading to the output of a 2-to-1 MUX component, and their outputs are connected 

to the component’s right side, leading to the input of a 1-to-2 DEMUX component. Each register’s input 

MUX gate contains two inputs, one from external I/O and the other from the output of the opposite 

register’s output DEMUX gate. Likewise, each component’s output MUX gate contains two outputs, one 

to external I/O and the other to the opposite register’s input MUX. This setup results in a cyclical data 

transfer structure between the registers with external I/O for both registers. 

 



www.manaraa.com

31 

Pull-Down 

Resistors
T

E
M

P
1

A
C

C

Bus 

Signals

 

Figure 16. Bus Architecture Cadence Power Simulation Setup 

To TEMP1
ACC

TEMP1M
U

X

M
U

X

D
E

M
U

X

D
E

M
U

X

From 

ACC

External 

Output

External 

Input

 

Figure 17. MUX-Based Architecture Cadence Power Simulation Setup 



www.manaraa.com

32 

 

Figure 19. Bus Architecture Power Simulation Waveform 

 

Figure 20. MUX-Based Architecture Power Simulation Waveform 

2.5 µs 

2.5 µs 

4.5 µs 

4.5 µs 

ACC 

IN 

Bus 

TEMP1 

IN 

TEMP1 

OUT 



www.manaraa.com

33 

Data Transfer Method Power (mW) 

Bus Architecture 369.080 

MUX-Based Architecture 1.497 

 
Table 5. Power Efficiency Comparison Simulation Results 

To acquire an accurate comparison between the two data transfer architectures, the power 

measurements were only taken between 2.5µs and 4.5µs in this test. These start and end times were 

chosen because it represents a full DATA-NULL cycle containing only internal component activity. Also, 

all signals begin and end deasserted, as seen in the waveforms, meaning all switching activity for the 

data transfer is contained within the period for both architectures. The resulting power consumption for 

both architectures across this data transfer period is shown in Table 5. As expected, the MUX-based 

architecture greatly out-performed the bus architecture with over two orders of magnitude less power 

consumed during the data transfer. The large amount of power consumed by the bus architecture can be 

attributed primarily to the large supply voltage for the still-developing RaySiC process.  

V. Conclusion 

This dissertation presents the first set of asynchronous 8031 microcontroller components designed in a 

high temperature SiC process. While the delay insensitivity provided by the asynchronous NULL 

Convention Logic enables the designed circuits to function properly at high temperatures and largely 

tolerate the device variations in this still-developing SiC process by Raytheon, the traditional bus-based 

data transfer architecture has been replaced with a MUX-based counterpart for improving power 

efficiency and overall performance of the design, at the cost of circuit size/area. 

This IC implements the major functionality of the Intel 8051/8031 microcontroller design capable of 

executing the full 8-bit instruction set. This instruction set is composed of 256 individual instructions 

capable of doing byte and bit-wise manipulation and calculations. Simulations were performed using the 

first CMOS SiC high-fidelity process design kit developed for the Cadence Virtuoso environment. Results 

show proper instruction set functionality with a 22.8% increase of overall performance, and an overall 

power efficiency increase of over two orders of magnitude. 



www.manaraa.com

34 

Today, there is a rising demand for ICs capable of stable performance in environments with large 

temperature swings, especially in the currently prevailing smart car and aerospace technology fields. The 

NCL 8051/8031 microcontroller IC makes for a prime candidate in these fields due to its dependable 

operation in high-temperature environments attributed to its delay insensitivity and SiC material 

characteristics, and its robust functional capabilities attributed to the modular 8051 microcontroller family 

design. These fields also require power efficient designs due to power availability and packaging reliability 

concerns. While this design represents a promising first step, further work is needed to improve this ICs 

viability for commercial use. The design would benefit from the addition of the previously mentioned 

excluded common microcontroller functionalities. Also, with further design iterations and major 

architectural changes revolving around the use of the MUX-based data transfer method, it is possible the 

overall performance can be further improved.  

  



www.manaraa.com

35 

VI. References 

 

[1] D.J. Spry, P.G. Neudeck, L.Chen, D.Lukco, C.W. Chang, G.M. Beheim, M.J. Krasowski, and N.F. 
Prokop, "Processing and Characterization of Thousand-Hour 500 °C Durable 4H-SiC JFET Integrated 
Circuits", Proceeings of the 2016 IMAPsInternational High Temperature Electronics Conference (HiTEC 
2016), Albuquerque, New Mexico USA, May 10-12, 2016 

[2] R. F. Thompson, D. T. Clark, A. E. Murphy, E. P. Ramsay, D. A. Smith, R. A. R. Young, J. D. 
Cormack, J. McGonigal, J. Fletcher, C. Zhu, s. Finney, L. C. Martin, A. B. Horsfall, “High Temperature 
Silicon Carbide CMOS Integrated Circuits”, High Temperature Electronics Network (HiTEN) 2011. 

[3] A. M. Francis, A. Rahman, J. Holmes, P. Shepherd, S. Ahmed, M. Barlow, S. Bhuyan, L. Caley, T. 
Moudy, H. A. Mantooth, J. Di, “Design of Analog and Mixed-Signal Integrated SiC CMOS Circuits with a 
High Fidelity Process Design Kit,” 2014 Government Microcircuit Applications & Critical Technology 
Conference (GOMACTech), March 2014 

[4] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete and Consistent Logic for 
Asynchronous Digital Circuit Synthesis,” International Conference on Application Specific Systems, 
Architectures, and Processors, 1996. 

[5] N. Kuhns, L. Caley, A. Rahman, S. Ahmed, J. Di, H. A. Mantooth, A. M. Francis, J. Holmes, “Complex 
High-Temperature CMOS Silicon Carbide Digital Circuit Designs,” IEEE Transactions on Device and 
Materials Reliability, vol. 16, no. 2, pp. 105-111, June 2016 

[6] Caley, Landon John, "High Temperature CMOS Silicon Carbide Asynchronous Circuit Design" (2015). 
Theses and Dissertations. http://scholarworks.uark.edu/etd/30 

[7] Microcontroller – Invention History and Story Behind the Scenes. (October 23, 2013) Available: 
http://www.circuitstoday.com/microcontroller-invention-history 

[8] S. Dimitrijev, “The Energy-Band Model,” in Principles of Semiconductor Devices, 2nd edition, New 
York, Oxford University Press, 2012, ch. 2, sec. 2.2.3, pp. 55-60. 

[9] B. Hollosi, M. Barlow, G. Fu, C. Lee, J. Di, S. C. Smith, H. A. Mantooth, and M. Schupbach, "Delay-
Insensitive Asynchronous ALU for Cryogenic Temperature Environments,” IEEE Midwest Symposium on 
Circuits and Systems, August 2008. 

[10] S. M. Nowick, M. Singh, “Asynchronous design – part 1: Overview and recent advances,” IEEE 
Design and Test, vol. 32, no. 3, pp. 5-18, June 1015 

[11] Intel – MCS 51 Microcontroller Family User’s Manual. (February, 1994) Available: 
www.industrologic.com/MCS51FamilyUsersGuide.pdf 

[12] Hollosi, Brent, “8051-compliant Asynchronous Microcontroller Core Design, Fabrication, and Testing 
for Extreme Environment” (2008). Theses and Dissertations. 
http://gradworks.umi.com/14/56/1456097.html 

 

  



www.manaraa.com

36 

VII. Appendices 

A. Appendix A: Control Signal Definitions 

absolute - Modifies the PC according to the computation specified by the ACALL and AJMP instructions. 
 
add - Addition of tmp1 and tmp2. 
 
addc - Addition of tmp1, tmp2, CY bit. 
 
and - Logical AND of tmp1 and tmp2. 
 
anlb - Logically ANDs a bit in tmp2 whose position is specified by value read from temp1 and bit 7 of 
tmp1 which contains the CY bit. 
 
anlbc - Logically ANDs the complement of a bit in tmp2 whose position is specified by value read from 
temp1 and bit 7 of tmp1 which contains the CY bit. 
 
clrb - Clears bit of tmp1 whose position is specified by value read from temp1. 
 
cpl - Complements tmp1. 
 
cplb - Complements bit of tmp1 whose position is specified by value read from temp1. 
 
c_zero - Supplies ALU with a low CY bit value. 
 
da - Decimal adjust on tmp1. 
 
dec - Decrements tmp1 by 1. 
 
div - Divides tmp1 by tmp2. 
 
fetch - Initiates the fetchx ASM.  The fetchx ASM which synchronously generates the control signals 
responsible for fetching an 8-bit data value from a 16-bit external memory address specified by the 
contents of the PC. 
 
fetchx - Identical to fetch except the contents of the DPTR are used to specify the 16-bit external 
memory address. 
 
fetchxlow - Initiates the process of fetching an 8-bit data value from an 8-bit external memory address 
specified by the contents of either R0 or R1. 
 
flag0 - Sets the CY, OV, and AC bits in the PSW based on the last ALU operation. 
 
flag1 - Sets the CY and OV bits in the PSW based on the last ALU operation. 
 
flag2 - Sets the CY bit in the PSW based on the last ALU operation. 
 
flag3 - Sets the Parity bit in the PSW based on the current contents of the Accumulator. 
 
gba (generate_byte_address) - Indicates that the byte address should be generated from the bit 
address being input to the SRAM block.  All bit addresses between 00H-7FH are output as the byte 
address containing that bit.  Bit addresses between 80H-FFH are output in the same way if that address 
is implemented in SFR space. If the bit address is of a non-implemented register the temp1 register is 
targeted. Used in the generation of addresses for Bit Addressing instructions e.g. CPL C, bit. 



www.manaraa.com

37 

 
inc – Increments the ALU’s tmp1 register by 1. 
 
inc_pc - Increments PC by 1. 
 
inc_dptr - Increments DPTR by 1. 
 
jb - Initiates a jump if the jump check bit is high. 
 
jnb - Initiates a jump if the jump check bit is low.   
 
lda (load_direct_address) - Indicates that the internal memory address will be taken directly from the 
SRAM block’s data input.  All byte addresses between 00H-7FH are directly output.  Byte addresses 
between 80H-FFH are directly output if that address is implemented in SFR space.  If the byte address is 
of a non-implemented register the temp1 register is targeted.  Used in generation of addresses for 
instructions using Direct Addressing e.g. Mv A, direct. 
 
movb - Replaces bit 7 of tmp1 with a bit in tmp2 whose position is specified by value read from temp1. 
 
movbc - Replaces a bit of tmp1 whose position is specified by value read from temp1 with bit 7 of tmp2. 
 
mul - Multiplies tmp1 and tmp2. 
 
obe (one_bit_encode) - Indicates that only I0 along with the RSx bits are used to generate the address.  
Used in generation of addresses for instructions using Indirect Addressing e.g. Mv A, @Ri. 
 
or - Logical OR of tmp1 and tmp2. 
 
orlb - Logically ORs bit in tmp2 whose position is specified by value read from temp1 and bit 7 of tmp1 
which contains the CY bit. 
 
orlbc - Logically ORs the complement of a bit in tmp2 whose position is specified by value read from 
temp1 and bit 7 of tmp1 which contains the CY bit. 
 
pc_addadptr - Adds the Accumulator to the DPTR and stores the result in the PC. 
 
pc_addapc - Adds the Accumulator to the PC and stores the result in the PC. 
 
pc_addrel - Adds an 8-bit relative offset to the PC. 
 
rd_ac - Reads out the AC bit from the PSW. 
 
rd_acc_zero - Activates zero checker logic of the Accumulator and distributes it to JUMP_CALC. 
 
rd_alu_low - Reads out the low byte of the last ALU operation onto the ALU block output. 
 
rd_alu_high - Reads out the low byte of the last ALU operation onto the ALU block output. 
 
rd_bit_pos - Reads out the 3-bit encoded bit position from temp1. 
 
rd_c - Reads out the CY bit from the PSW. 
 
rd_comp - Reads out an SRAM byte or SFR register’s contents onto the SRAM block output depending 
on the SRAM_BLOCK’s address latch whose contents are generated by the Address Generator.  As 
such, this signal’s assertion is always preceded in some previous state by a computation of the Address 
Generator. 



www.manaraa.com

38 

 
rd_hc00 - Reads out the hardcoded value x00 from the HC_BLOCK. 
 
rd_hcff - Reads out the hardcoded value xff from the HC_BLOCK. 
 
rl - Rotates tmp1 left. 
 
rlc - Rotates tmp1 left through CY. 
 
rr - Rotates tmp1 right. 
 
rrc - Rotates tmp1 right through CY. 
 
rri – read register information 
Reads out the register select bits in the PSW for use by the Address Generator. 
 
setb - Sets bit of tmp1 whose position is specified by value read from temp1. 
 
subb - Subtraction of tmp1 and CY bit from tmp2. 
 
swap - Exchanges the 4 low order bits of tmp1 with its 4 high order bits. 
 
tbe (three_bit_encode) - Indicates that all 3 bits of the instruction I2 – I0 along with the RSx bits are used 
to generate the address.  Used in generation of addresses for Register instructions e.g. Mv A, Rn 
 
wr_acc - Writes the accumulator block’s data input value into the Accumulator. 
 
wr_b - Writes the B register block’s data input value into SFR B. 
 
wr_comp - Writes in the SRAM_Block’s data latch to either an SRAM byte or SFR register’s contents 
depending on the SRAM_BLOCK’s address latch whose contents are generated by the Address 
Generator.  As such, this signal’s assertion is always preceded in some previous state by a computation 
of the Address Generator. 
 
wr_dpl - Writes the DPTR block’s data input value into SFR data pointer low (DPL). 
 
wr_dph - Writes the DPTR block’s data input value into SFR data pointer high (DPH). 
 
wsd (write sram data) - Writes the SRAM block’s data input value into the SRAM_Block’s data latch. 
 
wr_pc_low - Writes the PCDPTR block’s data input value into the lower 8 bits of the PC. 
  
wr_pc_high - Writes the PCDPTR block’s data input value into the higher 8 bits of the PC.  
 
wr_psw - Writes the PSW block’s data input value into SFR PSW. 
 
wr_sp - Writes the SP block’s data input value into SFR SP. 
 
wr_temp1 - Writes the temp1 block’s data input value into the temp1 register. 
 
wr_temp2 - Writes the temp2 block’s data input value into the temp2 register. 
 
wr_tmp1 - Writes the ALU block’s data 1 input value into the ALU’s tmp1 register. 
 
wr_tmp2 - Writes the ALU block’s data 2 input value into the ALU’s tmp2 register. 
 



www.manaraa.com

39 

writex - Initiates the process of writing an internal 16-bit data value to an external memory 
address specified by the contents of DPTR. 
 
writexlow - Initiates the process of writing an internal 8-bit data value to an external memory address 
specified by either R0 or R1. 
 
xchd - Exchanges the 4 lower order bits of tmp1 and tmp2. 
 
xor - Logical XOR of tmp1 and tmp2. 
 
name_name – Control signal used to indicate transfer of data from the component named first to the 
component named second. For example, the “temp1_acc” signal is used to represent the transfer of data 
from the temp1 register to the accumulator. These signals are used to generate the control signals for the 
MUX and DEMUX gates used in the data transfer path. 
  



www.manaraa.com

40 

B. Appendix B: Instruction Set and State List 

No Operation 

NOP    opcode: 0 

S0 fetch, port0_tac   

S1 inc_pc   

 

ALU Instructions 

ADD A, Rn   opcode: 1 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 add   

S4 flag0, rd_alu_low, alul_acc, wr_acc   

ADD A, direct   opcode: 2 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 add   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

ADD A, @Ri   opcode: 3 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 add   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

ADD A, #data   opcode: 4 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 add   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

ADDC A, Rn   opcode: 5 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 addc, rd_c   

S4 flag0, rd_alu_low, alul_acc, wr_acc   



www.manaraa.com

41 

ADDC A, direct   opcode: 6 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 addc, rd_c   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

ADDC A, @Ri   opcode: 7 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 addc, rd_c   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

ADDC A, #data   opcode: 8 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 addc, rd_c   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

SUBB A, Rn   opcode: 9 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 subb, rd_c   

S4 flag0, rd_alu_low, alul_acc, wr_acc   

SUBB A, direct   opcode: 10 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 subb, rd_c   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

SUBB A, @Ri   opcode: 11 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 subb, rd_c   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

  



www.manaraa.com

42 

SUBB A, #data   opcode: 12 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 subb, rd_c   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

INC A   opcode: 13 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 inc   

S3 rd_alu_low, alul_acc, wr_acc   

INC Rn   opcode: 14 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1   

S3 inc   

S4 rd_alu_low, wsd, alul_sram   

S5 wr_comp   

INC direct   opcode: 15 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, inc_pc   

S4 inc   

S5 rd_alu_low, wsd, alul_sram   

S6 wr_comp   

INC @Ri   opcode: 16 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 inc   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

DEC A   opcode: 17 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 dec   

S3 rd_alu_low, alul_acc, wr_acc   

  



www.manaraa.com

43 

DEC Rn   opcode: 18 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1   

S3 dec   

S4 rd_alu_low, wsd, alul_sram   

S5 wr_comp   

DEC direct   opcode: 19 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, inc_pc   

S4 dec   

S5 rd_alu_low, wsd, alul_sram   

S6 wr_comp   

DEC @Ri   opcode: 20 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 dec   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

INC DPTR   opcode: 21 

S0 fetch, port0_tac   

S1 inc_dptr, inc_pc   

MUL A, B   opcode: 22 

S0 fetch, port0_tac   

S1 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, b_tmp2, inc_pc   

S2 mul   

S3 flag1, rd_alu_low, alul_acc, wr_acc, rd_alu_high, wr_b, aluh_b   

DIV A, B   opcode: 23 

S0 fetch, port0_tac   

S1 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, b_tmp2, inc_pc   

S2 div   

S3 flag1, rd_alu_low, alul_acc, wr_acc, rd_alu_high, wr_b, aluh_b   

DA A   opcode: 24 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 rd_c, rd_ac, da   

S3 flag2, rd_alu_low, alul_acc, wr_acc   

  



www.manaraa.com

44 

ANL A, Rn   opcode: 25 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 and   

S4 rd_alu_low, alul_acc, wr_acc   

ANL A, direct   opcode: 26 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 and   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

ANL A, @Ri   opcode: 27 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 and   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

ANL A, #data   opcode: 28 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 and   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

ANL direct, A   opcode: 29 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 and   

S5 rd_alu_low, wsd, alul_sram   

S6 wr_comp   

  



www.manaraa.com

45 

ANL direct, #data   opcode: 30 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, inc_pc   

S4 fetch, wr_tmp2, port0_tmp2   

S5 and   

S6 rd_alu_low, wsd, alul_sram, inc_pc   

S7 wr_comp   

ORL A, Rn   opcode: 31 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 or   

S4 rd_alu_low, alul_acc, wr_acc   

ORL A, direct   opcode: 32 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 or   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

ORL A, @Ri   opcode: 33 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 or   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

ORL A, #data   opcode: 34 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 or   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

  



www.manaraa.com

46 

ORL direct, A   opcode: 35 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 or   

S5 rd_alu_low, wsd, alul_sram   

S6 wr_comp   

ORL direct, #data   opcode: 36 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, inc_pc   

S4 fetch, wr_tmp2, port0_tmp2   

S5 or   

S6 rd_alu_low, wsd, alul_sram, inc_pc   

S7 wr_comp   

XRL A, Rn   opcode: 37 

S0 fetch, port0_tac   

S1 rri, tbe, inc_pc   

S2 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S3 xor   

S4 rd_alu_low, alul_acc, wr_acc   

XRL A, direct   opcode: 38 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 xor   

S5 flag0, rd_alu_low, alul_acc, wr_acc   

XRL A, @Ri   opcode: 39 

S0 fetch, port0_tac   

S1 rri, obe, inc_pc   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2   

S5 xor   

S6 flag0, rd_alu_low, alul_acc, wr_acc   

  



www.manaraa.com

47 

XRL A, #data   opcode: 40 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp1, port0_tmp1, wr_tmp2, acc_tmp2   

S3 xor   

S4 flag0, rd_alu_low, inc_pc, alul_acc, wr_acc   

XRL direct, A   opcode: 41 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, wr_tmp2, acc_tmp2, inc_pc   

S4 xor   

S5 rd_alu_low, wsd, alul_sram   

S6 wr_comp   

XRL direct, #data   opcode: 42 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 wr_tmp1, rd_comp, sram_tmp1, inc_pc   

S4 fetch, wr_tmp2, port0_tmp2   

S5 xor   

S6 rd_alu_low, wsd, alul_sram, inc_pc   

S7 wr_comp   

CLR A   opcode: 43 

S0 fetch, port0_tac   

S1 rd_hc00, hc00_acc, wr_acc, inc_pc   

CPL A   opcode: 44 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 cpl   

S3 rd_alu_low, alul_acc, wr_acc   

RL A   opcode: 45 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 rl   

S3 rd_alu_low, alul_acc, wr_acc   

RLC A   opcode: 46 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 rlc, rd_c   

S3 rd_alu_low, alul_acc, wr_acc, flag2   

  



www.manaraa.com

48 

RR A   opcode: 47 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 rr   

S3 rd_alu_low, alul_acc, wr_acc, flag2   

RRC A   opcode: 48 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 rrc, rd_c   

S3 rd_alu_low, alul_acc, wr_acc, flag2   

SWAP A   opcode: 49 

S0 fetch, port0_tac   

S1 wr_tmp1, acc_tmp1, inc_pc   

S2 swap   

S3 rd_alu_low, alul_acc, wr_acc   

 

MOV Instructions 

MOV A, Rn   opcode: 50 

S0 fetch, port0_tac   

S1 inc_pc, rri, tbe   

S2 rd_comp, wr_acc, sram_acc   

MOV A, direct   opcode: 51 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc, rd_comp, wr_acc, sram_acc   

MOV A, @Ri   opcode: 52 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 rd_comp, wr_temp1, sram_temp1   

S3 lda, temp1_srama   

S4 rd_comp, wr_acc, sram_acc   

MOV A, #data   opcode: 53 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_acc, port0_acc   

S3 inc_pc   

MOV Rn, A   opcode: 54 

S0 fetch, port0_tac   

S1 inc_pc, rri, tbe, wsd, acc_sram   

S2 wr_comp   

  



www.manaraa.com

49 

MOV Rn, direct   opcode: 55 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc, rd_comp, wsd, sram_sram   

S4 rri, tbe   

S5 wr_comp   

MOV Rn, #data   opcode: 56 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wsd, port0_sram   

S3 inc_pc, rri, tbe   

S4 wr_comp   

MOV direct, A   opcode: 57 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama, wsd, acc_sram   

S3 inc_pc, wr_comp   

MOV direct, Rn   opcode: 58 

S0 fetch, port0_tac   

S1 inc_pc, rri, tbe   

S2 rd_comp, wsd, sram_sram   

S3 fetch, lda, port0_srama   

S4 inc_pc, wr_comp   

MOV direct, direct   opcode: 59 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc, rd_comp, wsd, sram_sram   

S4 fetch, lda, port0_srama   

S5 inc_pc, wr_comp   

MOV direct, @Ri   opcode: 60 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 rd_comp, wr_temp1, sram_temp1   

S3 lda, temp1_srama   

S4 rd_comp, wsd, sram_sram   

S5 fetch, lda, port0_srama   

S6 inc_pc, wr_comp   

  



www.manaraa.com

50 

MOV direct, #data   opcode: 61 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc   

S4 fetch, wsd, port0_sram   

S5 inc_pc, wr_comp   

MOV @Ri, A   opcode: 62 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 rd_comp, wr_temp1, sram_temp1   

S3 lda, temp1_srama, wsd, acc_sram   

S4 wr_comp   

MOV @Ri, direct   opcode: 63 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc, rd_comp, wsd, sram_sram   

S4 rri, obe   

S5 rd_comp, wr_temp1, sram_temp1   

S6 lda, temp1_srama   

S7 wr_comp   

MOV @Ri, #data   opcode: 64 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 rd_comp, wr_temp1, sram_temp1   

S3 lda, temp1_srama   

S4 fetch, wsd, port0_sram   

S5 inc_pc, wr_comp   

MOV DPTR, #data16   opcode: 65 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_dptrh, port0_pcdptr   

S3 inc_pc   

S4 fetch, wr_dptrl, port0_pcdptr   

S5 inc_pc   

 

 

 

 



www.manaraa.com

51 

Miscellaneous Instructions 

MOVC A, @A + DPTR   opcode: 66 

S0 fetch, port0_tac   

S1 inc_pc   

S2 pcl_temp1, wr_temp1, pch_temp2, wr_temp2   

S3 acc_pcdptr, pc_addadptr   

S4 fetch, wr_acc, port0_acc   

S5 temp1_pcdptr, wr_pc_low   

S6 temp2_pcdptr, wr_pc_high   

MOVC A, @A + PC    opcode: 67 

S0 fetch, port0_tac   

S1 inc_pc   

S2 pcl_temp1, wr_temp1, pch_temp2, wr_temp2   

S3 acc_pcdptr, pc_addapc   

S4 fetch, wr_acc, port0_acc   

S5 temp1_pcdptr, wr_pc_low   

S6 temp2_pcdptr, wr_pc_high   

MOVX A, @RI   opcode: 68 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 dptrl_temp1, wr_temp1   

S3 rd_comp, wr_dptrl, sram_pcdptr   

S4 fetchxlow, wr_acc, port0_acc   

S5 temp1_pcdptr, wr_dptrl   

MOVX A, @DPTR   opcode: 69 

S0 fetch, port0_tac   

S1 inc_pc, fetchx, wr_acc, port0_acc   

MOVX @RI, A   opcode: 70 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 dptrl_temp1, wr_temp1   

S3 rd_comp, wr_dptrl, sram_pcdptr   

S4 writexlow   

S5 temp1_pcdptr, wr_dptrl   

MOVX @DPTR, A   opcode: 71 

S0 fetch, port0_tac   

S1 inc_pc, writex   

  



www.manaraa.com

52 

PUSH direct   opcode: 72 

S0 fetch, port0_tac   

S1 inc_pc, sp_tmp1, wr_tmp1   

S2 inc   

S3 fetch, lda, port0_srama   

S4 inc_pc, rd_comp, wsd, sram_sram, rd_alu_low, lda, alul_srama   

S5 wr_comp, rd_alu_low, wr_sp, alul_sp   

POP direct   opcode: 73 

S0 fetch, port0_tac   

S1 inc_pc, sp_srama, lda   

S2 rd_comp, wsd, sram_sram   

S3 fetch, lda, port0_srama, sp_tmp1, wr_tmp1   

S4 inc_pc, dec   

S5 rd_alu_low, wr_sp, alul_sp, wr_comp   

XCH A, Rn   opcode: 74 

S0 fetch, port0_tac   

S1 inc_pc, rri, tbe   

S2 rd_comp, wr_temp1, sram_temp1, wsd, acc_sram   

S3 wr_comp, temp1_acc, wr_acc   

XCH A, Direct   opcode: 75 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc, rd_comp, wr_temp1, sram_temp1, wsd, acc_sram   

S4 wr_comp, temp1_acc, wr_acc   

XCH A, @Ri   opcode: 76 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 wr_temp1, rd_comp, sram_temp1   

S3 lda, temp1_srama   

S4 rd_comp, wr_temp1, sram_temp1, wsd, acc_sram   

S5 wr_comp, temp1_acc, wr_acc   

XCHD A, @Ri   opcode: 77 

S0 fetch, port0_tac   

S1 inc_pc, rri, obe   

S2 rd_comp, wr_temp1, sram_temp1   

S3 lda, temp1_srama   

S4 rd_comp, wr_tmp2, sram_tmp2, wr_tmp1, acc_tmp1   

S5 xchd   

S6 rd_alu_low, alul_acc, rd_alu_high, wsd, aluh_sram   

S7 wr_comp   

 



www.manaraa.com

53 

BIT Instructions 

CLR C   opcode: 78 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1, rd_hcff, hcff_temp1, wr_temp1   

S2 clrb, rd_bit_pos   

S3 rd_alu_low, wr_psw, alul_psw   

CLR bit   opcode: 79 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 clrb, rd_bit_pos   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

SETB C   opcode: 80 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1, rd_hcff, hcff_temp1, wr_temp1   

S2 setb, rd_bit_pos   

S3 rd_alu_low, wr_psw, alul_psw   

SETB bit   opcode: 81 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 setb, rd_bit_pos   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

CPL C   opcode: 82 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1, rd_hcff, hcff_temp1, wr_temp1   

S2 cplb, rd_bit_pos   

S3 rd_alu_low, wr_psw, alul_psw   

  



www.manaraa.com

54 

CPL bit   opcode: 83 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 cplb, rd_bit_pos   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

ANL C, bit   opcode: 84 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 rd_comp, wr_tmp2, sram_tmp2   

S5 anlb, rd_bit_pos   

S6 rd_alu_low, wr_psw, alul_psw   

ANL C, /bit   opcode: 85 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 rd_comp, wr_tmp2, sram_tmp2   

S5 anlbc, rd_bit_pos   

S6 rd_alu_low, wr_psw, alul_psw   

ORL C, bit   opcode: 86 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 rd_comp, wr_tmp2, sram_tmp2   

S5 orlb, rd_bit_pos   

S6 rd_alu_low, wr_psw, alul_psw   

ORL C, /bit   opcode: 87 

S0 fetch, port0_tac   

S1 inc_pc, psw_tmp1, wr_tmp1   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 rd_comp, wr_tmp2, sram_tmp2   

S5 orlbc, rd_bit_pos   

S6 rd_alu_low, wr_psw, alul_psw   

  



www.manaraa.com

55 

MOV C, bit   opcode: 88 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, psw_tmp1, wr_tmp1, temp1_srama, gba   

S4 rd_comp, wr_tmp2, sram_tmp2   

S5 movb, rd_bit_pos   

S6 rd_alu_low, wr_psw, alul_psw   

MOV bit, C   opcode: 89 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_srama, gba   

S4 wr_tmp1, rd_comp, sram_tmp1, psw_tmp2, wr_tmp2   

S5 movbc, rd_bit_pos   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

 

Branch Instructions 

JC rel   opcode: 90 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

 S3* inc_pc, rd_cy, jb   

S4 temp1_pcdptr, pc_addrel   

JNC rel   opcode: 91 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

 S3* inc_pc, rd_cy, jnb   

S4 temp1_pcdptr, pc_addrel   

JB bit, rel   opcode: 92 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, temp1_srama, gba   

S6 wr_tmp1, rd_comp, sram_tmp1   

 S7* rd_alu_bit, jb   

S8 temp2_pcdptr, pc_addrel   

  



www.manaraa.com

56 

JNB bit, rel   opcode: 93 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, temp1_srama, gba   

S6 wr_tmp1, rd_comp, sram_tmp1   

 S7* rd_alu_bit, jnb   

S8 temp2_pcdptr, pc_addrel   

JBC bit, rel   opcode: 94 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, temp1_srama, gba   

S6 wr_tmp1, rd_comp, sram_tmp1   

 S7* rd_alu_bit, jb   

S8 temp2_pcdptr, pc_addrel   

S9 clrb, rd_bit_pos   

S10 rd_alu_low, wsd, alul_sram   

S11 wr_comp   

ACALL    opcode: 95 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, sp_tmp1, wr_tmp1   

S4 inc   

S5 rd_alu_low, lda, alul_srama, pcl_sram, wsd   

S6 wr_comp   

S7 rd_alu_low, wr_tmp1, alul_tmp1   

S8 inc   

S9 rd_alu_low, lda, alul_srama, pch_sram, wsd   

S10 wr_comp   

S11 temp1_pcdptr, absolute   

S12 rd_alu_low, wr_sp, alul_sp   

  



www.manaraa.com

57 

LCALL    opcode: 96 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, sp_tmp1, wr_tmp1   

S6 inc   

S7 rd_alu_low, lda, alul_srama, pcl_sram, wsd   

S8 wr_comp, rd_alu_low, wr_tmp1, alul_tmp1   

S9 inc   

S10 rd_alu_low, lda, alul_srama, pch_sram, wsd, temp2_pcdptr, wr_pc_low   

S11 wr_comp, temp1_pcdptr, wr_pc_high, rd_alu_low, wr_sp, alul_sp   

RET    opcode: 97 

S0 fetch, port0_tac   

S1 inc_pc, sp_srama, lda   

S2 rd_comp, wr_pc_high, sram_pcdptr, sp_tmp1, wr_tmp1   

S3 dec   

S4 rd_alu_low, lda, alul_srama   

S5 rd_comp, wr_pc_low, sram_pcdptr, rd_alu_low, wr_tmp1, alul_tmp1   

S6 dec   

S7 rd_alu_low, wr_sp, alul_sp   

RETI    opcode: 98 

S0 fetch, port0_tac   

S1 inc_pc, sp_srama, lda   

S2 rd_comp, wr_pc_high, sram_pcdptr, sp_tmp1, wr_tmp1   

S3 dec   

S4 rd_alu_low, lda, alul_srama   

S5 rd_comp, wr_pc_low, sram_pcdptr, rd_alu_low, wr_tmp1, alul_tmp1   

S6 dec   

S7 rd_alu_low, wr_sp, alul_sp   

S8 reti   

AJMP    opcode: 99 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_pcdptr, absolute   

  



www.manaraa.com

58 

LJMP    opcode: 100 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 temp1_pcdptr, wr_pc_high   

S6 temp2_pcdptr, wr_pc_low   

SJMP    opcode: 101 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, temp1_pcdptr, pc_addrel   

JMP @A + DPTR   opcode: 102 

S0 fetch, port0_tac   

S1 inc_pc   

S2 acc_pcdptr, pc_addadptr   

JZ    opcode: 103 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

 S3* inc_pc, rd_acc_zero, jb   

S4 temp1_pcdptr, pc_addrel   

JNZ    opcode: 104 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

 S3* inc_pc, rd_acc_zero, jnb   

S4 temp1_pcdptr, pc_addrel   

CJNE A, direct, rel   opcode: 105 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, wr_tmp1, acc_tmp1   

S6 lda, temp1_srama   

S7 rd_comp, wr_tmp2, sram_tmp2   

S8 subb, c_zero   

S9 flag2   

 S10* rd_alu_zero, jnb   

S11 temp2_pcdptr, pc_addrel   

  



www.manaraa.com

59 

CJNE A, #data, rel   opcode: 106 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp2, port0_tmp2   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, wr_tmp1, acc_tmp1   

S6 subb, c_zero   

S7 flag2   

 S8* rd_alu_zero, jnb   

S9 temp2_pcdptr, pc_addrel   

CJNE Rn, #data, rel   opcode: 107 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp2, port0_tmp2   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp1   

S5 inc_pc, rri, tbe   

S6 wr_tmp1, rd_comp, sram_tmp1   

S7 subb, c_zero   

S8 flag2   

 S9* rd_alu_zero, jnb   

S10 temp2_pcdptr, pc_addrel   

CJNE @Ri, #data, rel   opcode: 108 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_tmp2, port0_tmp2   

S3 inc_pc   

S4 fetch, wr_temp2, port0_temp2   

S5 inc_pc, rri, obe   

S6 rd_comp, wr_temp1, sram_temp1   

S7 lda, temp1_srama   

S8 wr_tmp1, rd_comp, sram_tmp1   

S9 subb, c_zero   

S10 flag2   

 S11* rd_alu_zero, jnb   

S12 temp2_pcdptr, pc_addrel   

  



www.manaraa.com

60 

DJNZ Rn, rel   opcode: 109 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, wr_temp1, port0_temp1   

S3 inc_pc, rri, tbe   

S4 wr_tmp1, rd_comp, sram_tmp1   

S5 dec   

S6 rd_alu_low, wsd, alul_sram   

S7 wr_comp   

 S8* rd_alu_zero, jnb   

S9 temp1_pcdptr, pc_addrel   

DJNZ direct, rel   opcode: 110 

S0 fetch, port0_tac   

S1 inc_pc   

S2 fetch, lda, port0_srama   

S3 inc_pc   

S4 fetch, wr_temp1, port0_temp1   

S5 inc_pc, wr_tmp1, rd_comp, sram_tmp1   

S6 dec   

S7 rd_alu_low, wsd, alul_sram   

S8 wr_comp   

 S9* rd_alu_zero, jnb   

S10 temp1_pcdptr, pc_addrel 

*Branch State 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2017

	Power Efficient High Temperature Asynchronous Microcontroller Design
	Nathan William Kuhns
	Recommended Citation


	tmp.1495818398.pdf.b25sA

